The quality of consequences in a decision making problem under (severe) uncertainty must often be compared among different targets (goals, objectives) simultaneously. In addition, the evaluations of a consequence's performance under the various targets often differ in their scale of measurement, classically being either purely ordinal or perfectly cardinal. In this paper, we transfer recent developments from abstract decision theory with incomplete preferential and probabilistic information to this multi-target setting and show how -- by exploiting the (potentially) partial cardinal and partial probabilistic information -- more informative orders for comparing decisions can be given than the Pareto order. We discuss some interesting properties of the proposed orders between decision options and show how they can be concretely computed by linear optimization. We conclude the paper by demonstrating our framework in an artificial (but quite real-world) example in the context of comparing algorithms under different performance measures.
translated by 谷歌翻译
尽管在机器学习的方法论核心中是一个问题,但如何比较分类器仍未达成一致的共识。每个比较框架都面临着(至少)三个基本挑战:质量标准的多样性,数据集的多样性以及选择数据集选择的随机性/任意性。在本文中,我们通过采用决策理论的最新发展,为生动的辩论增添了新的观点。我们最终的框架基于所谓的偏好系统,通过广义的随机优势概念对分类器进行排名,该概念强大地绕过了繁琐的,甚至通常是自相矛盾的,对聚合的依赖。此外,我们表明,可以通过解决易于手柄的线性程序和通过适应的两样本观察随机化测试进行统计测试来实现广泛的随机优势。这确实产生了一个有力的框架,可以同时相对于多个质量标准进行分类器的统计比较。我们在模拟研究和标准基准数据集中说明和研究我们的框架。
translated by 谷歌翻译
贝叶斯优化(BO)与高斯工艺(GP)作为代理模型广泛用于优化分析且昂贵的函数。在本文中,我们提出了先前的卑鄙贝叶斯优化(Probo),以特定问题表达了古典博。首先,我们研究高斯过程的效果对古典博的收敛性的先前规范。我们发现前面的平均参数对所有先前组件之间的收敛具有最高影响。响应于此结果,我们将probo介绍为博的概括,其旨在使该方法更加强大地朝着先前的平均参数误操作。这是通过明确地通过先前的近无知模型进行GP来实现的实现。在核心的核心是一种新的采集功能,广义较低的置信度(GLCB)。我们在物质科学的真实问题上测试我们对古典博的方法,并观察Progo更快地收敛。关于多模式和WIGGLY目标功能的进一步实验证实了我们方法的优越性。
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
Edge computing is changing the face of many industries and services. Common edge computing models offload computing which is prone to security risks and privacy violation. However, advances in deep learning enabled Internet of Things (IoTs) to take decisions and run cognitive tasks locally. This research introduces a decentralized-control edge model where most computation and decisions are moved to the IoT level. The model aims at decreasing communication to the edge which in return enhances efficiency and decreases latency. The model also avoids data transfer which raises security and privacy risks. To examine the model, we developed SAFEMYRIDES, a scene-aware ridesharing monitoring system where smart phones are detecting violations at the runtime. Current real-time monitoring systems are costly and require continuous network connectivity. The system uses optimized deep learning that run locally on IoTs to detect violations in ridesharing and record violation incidences. The system would enhance safety and security in ridesharing without violating privacy.
translated by 谷歌翻译
Cognitive Computing (COC) aims to build highly cognitive machines with low computational resources that respond in real-time. However, scholarly literature shows varying research areas and various interpretations of COC. This calls for a cohesive architecture that delineates the nature of COC. We argue that if Herbert Simon considered the design science is the science of artificial, cognitive systems are the products of cognitive science or 'the newest science of the artificial'. Therefore, building a conceptual basis for COC is an essential step into prospective cognitive computing-based systems. This paper proposes an architecture of COC through analyzing the literature on COC using a myriad of statistical analysis methods. Then, we compare the statistical analysis results with previous qualitative analysis results to confirm our findings. The study also comprehensively surveys the recent research on COC to identify the state of the art and connect the advances in varied research disciplines in COC. The study found that there are three underlaying computing paradigms, Von-Neuman, Neuromorphic Engineering and Quantum Computing, that comprehensively complement the structure of cognitive computation. The research discuss possible applications and open research directions under the COC umbrella.
translated by 谷歌翻译
Reading comprehension of legal text can be a particularly challenging task due to the length and complexity of legal clauses and a shortage of expert-annotated datasets. To address this challenge, we introduce the Merger Agreement Understanding Dataset (MAUD), an expert-annotated reading comprehension dataset based on the American Bar Association's 2021 Public Target Deal Points Study, with over 39,000 examples and over 47,000 total annotations. Our fine-tuned Transformer baselines show promising results, with models performing well above random on most questions. However, on a large subset of questions, there is still room for significant improvement. As the only expert-annotated merger agreement dataset, MAUD is valuable as a benchmark for both the legal profession and the NLP community.
translated by 谷歌翻译
The application of deep learning algorithms to financial data is difficult due to heavy non-stationarities which can lead to over-fitted models that underperform under regime changes. Using the Numerai tournament data set as a motivating example, we propose a machine learning pipeline for trading market-neutral stock portfolios based on tabular data which is robust under changes in market conditions. We evaluate various machine-learning models, including Gradient Boosting Decision Trees (GBDTs) and Neural Networks with and without simple feature engineering, as the building blocks for the pipeline. We find that GBDT models with dropout display high performance, robustness and generalisability with relatively low complexity and reduced computational cost. We then show that online learning techniques can be used in post-prediction processing to enhance the results. In particular, dynamic feature neutralisation, an efficient procedure that requires no retraining of models and can be applied post-prediction to any machine learning model, improves robustness by reducing drawdown in volatile market conditions. Furthermore, we demonstrate that the creation of model ensembles through dynamic model selection based on recent model performance leads to improved performance over baseline by improving the Sharpe and Calmar ratios. We also evaluate the robustness of our pipeline across different data splits and random seeds with good reproducibility of results.
translated by 谷歌翻译
In this work, we address the problem of unsupervised moving object segmentation (MOS) in 4D LiDAR data recorded from a stationary sensor, where no ground truth annotations are involved. Deep learning-based state-of-the-art methods for LiDAR MOS strongly depend on annotated ground truth data, which is expensive to obtain and scarce in existence. To close this gap in the stationary setting, we propose a novel 4D LiDAR representation based on multivariate time series that relaxes the problem of unsupervised MOS to a time series clustering problem. More specifically, we propose modeling the change in occupancy of a voxel by a multivariate occupancy time series (MOTS), which captures spatio-temporal occupancy changes on the voxel level and its surrounding neighborhood. To perform unsupervised MOS, we train a neural network in a self-supervised manner to encode MOTS into voxel-level feature representations, which can be partitioned by a clustering algorithm into moving or stationary. Experiments on stationary scenes from the Raw KITTI dataset show that our fully unsupervised approach achieves performance that is comparable to that of supervised state-of-the-art approaches.
translated by 谷歌翻译
Automated text analysis has become a widely used tool in political science. In this research, we use a BERT model trained on German party manifestos to identify the individual parties' contribution to the coalition agreement of 2021.
translated by 谷歌翻译